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Abstract: As a low-coherence interferometry-based imaging modality, optical coherence
tomography (OCT) inevitably suffers from the influence of speckles originating from multiply
scattered photons. Speckles hide tissue microstructures and degrade the accuracy of disease
diagnoses, which thus hinder OCT clinical applications. Various methods have been proposed
to address such an issue, yet they suffer either from the heavy computational load, or the
lack of high-quality clean images prior, or both. In this paper, a novel self-supervised deep
learning scheme, namely, Blind2Unblind network with refinement strategy (B2Unet), is proposed
for OCT speckle reduction with a single noisy image only. Specifically, the overall B2Unet
network architecture is presented first, and then, a global-aware mask mapper together with
a loss function are devised to improve image perception and optimize sampled mask mapper
blind spots, respectively. To make the blind spots visible to B2Unet, a new re-visible loss is
also designed, and its convergence is discussed with the speckle properties being considered.
Extensive experiments with different OCT image datasets are finally conducted to compare
B2Unet with those state-of-the-art existing methods. Both qualitative and quantitative results
convincingly demonstrate that B2Unet outperforms the state-of-the-art model-based and fully
supervised deep-learning methods, and it is robust and capable of effectively suppressing speckles
while preserving the important tissue micro-structures in OCT images in different cases.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical coherence tomography (OCT) is a noninvasive high-resolution imaging modality and
is capable of providing both cross-sectional and three-dimensional (3D) tissue microstructure
images with a resolution of up to a few micrometers [1]. Over the past few decades, OCT has
been adopted for various applications for its noninvasive and high-resolution properties [2]. Due
to its inherent low-coherence interferometry nature, however, OCT inevitably suffers from the
influences of speckles that are introduced by multiple forward and backscattering of illumination
light. Speckles hide the critical tissue microstructures and reduce the contrast of OCT images,
and make it difficult to identify tissue structure boundaries, which thus reduce the accuracy of
disease diagnoses, and finally, hinder OCT clinical applications [3].

To alleviate the influences of speckles to OCT imaging, various despeckling methods have
been proposed in literature over the past decades. Such methods can be roughly categorized
into model-based and deep-learning-based ones [4]. Specifically, the model-based methods
usually devise filters to reduce speckles according to certain image properties, such as inter-image
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similarities, image sparsity, and some other domain components. According to the filtering
scheme been adopted, the model-based methods could be further divided into spatial domain and
transform domain ones. Non-local mean (NLM) filtering [5], total variation (TV) regularization
[6], block-matching and three-dimensional filtering (BM3D) [7], non-local weighted sparse
representation (NWSR) [8], and the two-step iteration method (TSI) [9] are typical spatial
domain model-based methods. NLM filtering calculates neighborhood pixel weights based on
image self-similarity [5], while BM3D employs a block level estimation for denoising [7]. TV
regularization combines the inter-frame low rank prior and the intra-frame total anisotropic
variation prior for despeckling [10], whereas NWSR adopts a sparse representation of multiple
similar noisy and denoised patches to improve estimation of a new patch [8]. TSI divides OCT
speckle noise into additive and multiplicative components and then adopts a two-step filtering
scheme to suppress such components iteratively. Although satisfactory results could be achieved
with those model-based methods, limitations still exist. BM3D may lose both edge boundaries
and texture details for images with high complexity and low contrast, while NWSR destroys
structural details of the reconstructed images using vectorization patches. Both NLM and TV
regularization suffer from excessive smoothing in certain areas, and TSI computational efficiency
must be improved. In contrast, the transform domain mechanisms of despeckling are different.
Both wavelet and curvelet transform methods are converting time-domain images into Fourier or
wavelet domain, followed by separating clean signals from the noises with appropriate filters
designed [11,12]. However, since these methods are based mainly on the assumption that there
are no spectrum overlaps between the clean and noisy signals in transform domain, despeckling
efficiency is the main problem due to the dual role of speckles in OCT imaging.

With the rapid development advancement of artificial intelligence (AI) in recent years, various
deep-learning methods have also been proposed for OCT despeckling [13]. The main advantage
of these methods is that they could effectively remove speckles while retaining structural details
using deep networks with appropriate learning schemes. Convolutional neural networks (CNNs)
have already shown their excellence in OCT despeckling [14]. For example, Zhang et al. presented
a deep CNN network, namely DnCNN, for image denoising [15]. With a batch normalization
(BN) layer to address the gradient dispersion effect and a residual learning scheme to improve
network learning ability, DnCNN outperforms the model-based methods under different noise
levels. Super-Resolution CNN (SRCNN) is another deep learning method that has been proposed
for image processing [16]. By direct learning the end-to-end mapping between corresponding
low- and high-resolution images, SRCNN is typically used for both image super-resolution and
denoising. Since both DnCNN and SRCNN use bicubic interpolation scheme in their training
sessions, the computational load is relatively high. It is also worth noting that most of the
learning-based denoising schemes are fully supervised, wherein noisy and clean image pairs
are needed for training. In practice, however, it is difficult to acquire noise-free ground truth
images for two reasons. First, due to the dual role of speckles in OCT imaging, it is impossible to
separate the clean images from their noisy peers. Second, the possible solution, i.e., repeated
frame acquisition at the same tissue position, is time-consuming and prone to motion artifacts,
especially for in vivo imaging. Therefore, simple and effective despeckling schemes are highly
desired in clinical practice.

To address the above issues with those fully supervised denoising schemes, another possible
solution is self-supervised denoising (also named unsupervised denoising), which is attracting
increasing research interests recently [17]. Ulyanov et al. proposed a single image depth learning
model, namely, deep image prior (DIP), for image restoration with a deep network architecture
[18]. By utilizing an implicit regularization strategy to fit corrupted images, DIP is effective for
denoising, especially for images with low noise level. DIP achieves satisfactory performances,
but it is shown to be less competitive as compared with the typical model-based BM3D. Another
self-supervised denoising method, namely Self2Self, was also demonstrated by training a dropout
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denoiser with a Bernoulli sampler-generated pair and averaging over the predicted multiple
instances [19]. Although Self2Self has no prerequisite but a single noisy image, it takes a long
time for model training, which thus makes it unsuitable for real-time denoising. To save training
time and overcome the information loss, a Blind2Unblind method was also proposed [20]. By
employing a global-aware mask mapper for perception and training acceleration, and a re-visible
loss-based training strategy for non-blind denoising, Blind2Unblind achieves satisfactory results
without any noise information or model prior.

In recent years, some un-supervised or self-supervised methods have also been proposed
for speckle noise reduction in OCT images. By decomposing the noisy images into content
and noise spaces with an encoder first, and then adopting a generator to predict the denoised
image contents with the extracted features, Huang et al. reported the first unsupervised method,
namely DRGAN-OCT, for speckle reduction with a small number of network training only,
yet without employing any matched image pairs [21]. Guo et al. proposed to employ GAN
discriminator to distinguish the real noisy samples from the fake ones and then use the NLM
method to improve the denoising performance [22]. Although both methods require no ground
truth images, multiple adjacent similar B-scan images are still required. Zhou et al. [23] proposed
to combine cross-scale CNN with an intra-/inter-patch-based transformer for unsupervised OCT
despeckle. With the former extracting the local features while the latter to extract and merge the
local and global features, such a method obtains good performances by using a reconstruction
network to produce the final denoised result. Since both CNN and transformer are required for
feature extractions, however, it is relatively computationally extensive with higher processing time
needed. More recently, two new self-supervised methods have also been proposed. Specifically,
Li et al. proposed a method, namely, MAP-SNR, for speckle reduction [24]. By randomly
selecting adjacent pixel blocks from the original noise image to generate two similar subsampling
ones as input and target, while a self-supervised strategy to map the relationship between adjacent
pixels, MAP-SNR achieves reliable contribution in speckle noise reduction for single OCT image.
On the contrary, by replacing the frame average method with 3 frames fusion images through
pre-training, Rico-Jimenez et al. proposed a self-fusion neural network for real-time OCT image
denoising [25]. Although results show that these methods achieve satisfactory results, a number
of adjacent frame datasets are still needed for learning/fusion. Self-/unsupervised denoising
methods are expected to be a potential candidate for real-time OCT despeckling owing to their
relative lower requirement on supervision datasets, however, the balancing between performances
and system complexity has always been an insurmountable problem, and therefore, simpler and
more effective mechanism are highly desired in practice.

Due to the dual role of speckles in OCT images, which are regarded to be both the information
carrier and the noises that affect the structure details, the loss function is divergent when using
Blind2Unblind for OCT image training, and therefore, the Blind2Unblind cannot be employed
directly for OCT despeckling. Inspired by the self-supervised Blind2Unblind denoising strategy,
an improved self-supervised Blind2Unblind scheme, namely, Blind2Unblind network with
refinement strategy (B2Unet), together with a new global-aware mask mapper and a re-visible
loss function is devised for OCT speckle reductions. Specifically, the new re-visible loss function
is devised to address the loss divergence issue of Blind2Unblind for OCT despeckling, while a
novel refinement module is also devised and integrated onto the Blind2Unblind inference unit
to improve the network performances. By dividing each noisy image into several mini-blocks
first, and then set some pixels in those mini-blocks to be blind spots to generate volumetric noisy
images with the devised global masks, the B2Unet finally feeds the volumetric noisy images,
which are sampled by the global mask mapper, into the denoising network for despeckled image
generation. The main contributions of this paper are as follows.

1. A self-supervised B2Unet network with a new global mask mapper and a re-visible loss
function is proposed for the first time, to the best of our knowledge, for OCT speckle reductions.
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2. A new loss function is devised to address the divergence issue with B2Unet training, while
its upper and lower convergence bounds are also analyzed theoretically.

3. A refinement strategy is devised and integrated onto B2Unet inference model to improve
denoising performances of the overall network.

4. Experiments with different OCT images, with both down- and up-sampling processing, are
conducted to compare B2Unet with those of the state-of-the-art existing methods for verification.

The rest of this paper is organized as follows. Section 2 presents the proposed B2Unet
architecture. Section 3 theoretically analyzes the feasibility of the devised re-visible loss and
gives its lower and upper bounds. Experiments are presented in Section 4 to compare B2Unet
with the state-of-the-art existing methods. Section 5 concludes the whole paper.

2. Method

It is reported that pixels in OCT images do not exist independently, instead, the values of each
pixel and its surrounding ones are conditionally related [26]. Hence, if a mask mapper is applied
to an OCT image to break the correlation between their pixels, a neural network can employ the
information of these masked pixels to infer their true values via the surrounding pixels. In this
study, we introduce the masking strategy into the Blind2Unblind training model, and devise a
B2Unet network for OCT despeckling [20].

2.1. B2Unet model

Figure 1 shows the diagram of B2Unet network. As shown, it consists of a training and an
inference unit. For the training scheme, a noisy volume with blind spot mask is Ωy generated
first using a noisy OCT image y and a global masker Ω(·). Such a noisy volume is then fed into
a denoising network fθ (·) to generate a denoised volume fθ (Ωy), which again is sampled by a
global mask mapper to generate a pseudo denoised image g(fθ (Ωy)) . Meanwhile, the original
noisy image y is also input to the same denoising network fθ (·) without gradient updating to
obtain a denoised image fθ (y). Finally, the original noisy image y, the denoised image fθ (y),
as well as the generated pseudo denoised image are processed together to generate a denoised
image by minimizing the re-visible loss. In this way, the B2Unet model is trained, which not only
eliminates the information loss caused by blind spots, but also ensures the satisfactory training
convergence. While for the inference scheme, While for the inference scheme, the noisy OCT
images are input into the well-trained despeckling network model first to generate the denosied
images, which are then input into a refinement module to generate the desired despeckled images.
In this study, the denoising network adopts a typical U-net for training.

2.2. Global masker and global-aware mask mapper

Various methods have been proposed to train the hidden pixels with manual masking [27].
However, it is worth noting that those existing optimization functions focus only on the masking
regions, and it may cause certain problems, such as reduced accuracy and slow convergence rate.
To address such issues for B2Unet, a global masker is adopted to mask the noisy image first, and
then all masks are re-projected into the same image after denoising.

Figure 2 presents the devised masking strategy. As we can seen, a mask image, the size of
which is the same as that of the noisy image y, is divided into several blocks with 2 × 2 cells
first, and then two pixels are randomly chosen as the blind spots in each cell, and the mask is
obtained by randomly masking each 2 × 2 cell in image y. Meanwhile, the noisy image y is
filtered by a kernel with both stride and padding to be 1 to generate yc. By conducting yc × mask,
ym is created and yinv is generated sequentially by performing y ×(1 − mask). Finally, the masked
image Ωy is obtained after summing ym and yinv.

To improve then information exchange between the mask regions, a global mask mapper is
adopted to map the denoised images on blind spots, which helps increasing the accuracy of noise
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Fig. 1. Architecture diagram of the proposed B2Unet model.

Fig. 2. Workflow of the global masker.

removal and speeding up the manual mask training. The workflow of this process is shown in
Fig. 3, wherein the denoised images fθ (Ωy)i are multiplied by their corresponding masks first,
and then, the pixel values are summarized to synthesize the pseudo denoised image g(fθ (Ωy)).

2.3. Denoising refinement module

Due to the randomness of the mask images been selected for the global masker during training,
the denoised images obtained by using the denoising network alone would not be satisfactory
results, since some of those denoised images may still contain speckle residues. To address
such an issue, a denoising refinement module as shown in Fig. 4 is devised and integrated into
inference unit of B2Unet. As seen, the denoised image is multiplied by four mask images first,
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Fig. 3. Workflow of the global mask mapper.

and then the generated four images are input into the trained denoising network again. Finally,
the four images generated by the denoising network are averaged to generate the final refined
image. The mask generation in the refinement module of inference unit is similar to that in the
training unit. While the mask image with the same size as the denoised image is divided into
several blocks with 2×2 cells. For each block, the blind spot in the 2×2 cells of the mask image
are selected one by one sequentially in a clockwise direction.

Fig. 4. Workflow of the refinement module in the inference unit.

2.4. Re-visible loss

To optimize B2Unet for OCT speckle reductions, a new re-visible loss function is designed.
Specifically, the denoised images with blind spot denoising and non-blind spot denoising are
combined to improve training stability, and the re-visible loss can be expressed as below,

L =
∥︁∥︁g (︁

fθ
(︁
Ωy

)︁ )︁
− f̂θ (y)

∥︁∥︁2
2 + (λ − 1)

∥︁∥︁f̂θ (y) − y
∥︁∥︁2
2 + 2

∥︁∥︁g (︁
fθ

(︁
Ωy

)︁ )︁
− y

∥︁∥︁
1 ·

∥︁∥︁f̂θ (y) − y
∥︁∥︁
1 (1)

where fθ (·) denotes the denoising network, g (·) denotes the result of global mask mapper, λ is a
variable hyper-parameter that helps to avoid the divergence in model training. f̂θ (y) indicates
that the noisy image y itself is obtained during the training without gradient updating.

3. Theory

By adopting blind spot schemes, self-supervised methods require less information, although the
denoising effects are less significant as compared with the fully supervised ones.
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In this study, our main objective is to transform the invisible blind spots into visible ones [20],
and the devised loss function for multi-task denoising is as follows,

arg min
θ

Ey
∥︁∥︁g (︁
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)︁ )︁
− y
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2 + λ · ∥fθ (y) − y∥2

2 (2)

where Ωy is the noisy masked volume that contains blind spots at all positions in image y. g (·) is
the devised global-aware mask mapper, which denoises all the pixels at blind spots and maps
them to a pseudo denoised image.

In this study, Eq. (2) is adopted as the objective training function for identity mapping.
Furthermore, both the blind spots and the non-blind denoising schemes are combined to formulate
a re-visible loss function for denoising, and the inequality between such two schemes are
illustrated as follows,∥︁∥︁g (︁
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(3)
To avoid that the objective training function learns a single identity mapping relationship only,

fθ (y) is expected not to participate in the back propagation, and thus, the denoising network fθ (y)
in Eq (2) is replaced with a model f̂θ (y) that has no gradient updating. Hence, we convert the
loss function Eq. (2) into the one as below,

arg min
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Furthermore, to ensure that f̂θ (y) participates in gradient updating implicitly, the objective
function is expected to guarantee that the derivative of fθ

(︁
Ωy

)︁
contains f̂θ (y) to fulfil the

non-blind requirements. Meanwhile, the optimized objective function should also converge
during the training process. Hence, the derivative of the first term in Eq. (4) could be obtained as
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To simplify the subsequent discussion, we set,
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Moreover, as the following equation usually holds,∥︁∥︁∥︁|︁|︁f̂θ (y) − g
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To achieve ideal denoising effect, for λ>1, we have∥︁∥︁∥︁|︁|︁f̂θ (y) − g
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Hence, when τ (y) is the minimum, the denoiser converges to f ∗θ , while the optimal solution x̃

of arg minθ
∥︁∥︁∥︁f̂θ (y) − g

(︁
fθ

(︁
Ωy

)︁ )︁
−
√
λ − 1

(︂
f̂θ (y) − y

)︂∥︁∥︁∥︁2

2
can be obtained,

x̃ = f̂ ∗θ (y) −
f̂ ∗θ (y) − g

(︁
f ∗θ

(︁
Ωy

)︁ )︁
√
λ − 1

(9)

The above results indicate that, once given a noisy image y, both lim
λ→2

x̃ = g
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f ∗θ

(︁
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)︁ )︁
and
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λ→∞
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≤ x̃ ≤ f̂ ∗θ (y). Furthermore, as the denoised

image x is generated from the noisy images y only, the above limits still hold for Eq. (9) , then we
can set λ to be λ→ ∞ , and finally, the optimal x̃ converges to its upper limit.

In this study, we set B2Unet re-visible loss function as follows,
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where △ is used for regularization and it could be set as below,
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In this way, the blind spots can be visible to B2Unet with the re-visible loss function Eq. (1).

4. Experiments

To verify the effectiveness of B2Unet scheme, experiments are carried out to compare it with those
state-of-the-art existing methods, such as two step iteration (TSI) [9], NWSR [8], SRCNN [9],
DRGAN [21] and MAP-SNR [24]. For fair comparisons, all existing methods are implemented
the same way as they were reported, and all their parameters are tuned to achieve their respective
best performances in the study.

4.1. Datasets

The public OCT retinal image dataset provided in [28,29] is adopted for experiments. Such a
dataset is collected by a Bioptigen SD-OCT (Durham, NC, USA) with an axial resolution of
4.5µm per pixel [30], and it contains four subsets, of which the first three were collected from the
human eyes, while the last one was acquired from mouse. We denote them to be D1, D2, D3
and D4, respectively. The D1 and D3 contain noisy-clean image pairs, while D2 and D4 contain
noisy images only. Since all four subset images are collected with the same OCT, we reasonably
assume that the speckle distribution patterns are the same.

For fair comparisons, both DnCNN and SRCNN are trained with the noisy-clean image pairs
from D1, i.e., three noisy-clean image pairs are randomly chosen from D1 first, and then each
image pair is cropped into 70 patches, with a size of 256×256 pixels, in a stride of 50 to generate
a new training dataset, hence, totally 210 new noisy-clean image pairs are obtained. While for
B2Unet, three noisy images are randomly chosen from D1 first, and then they are cropped in the
same way as the 210 noisy patches above obtained for training.

4.2. Parameter setting

In this study, B2Unet adopts an U-net architecture that is optimized by an adaptive momentum
estimation (Adam) with a learning rate of 1e-4 and a training epoch number of 20 [31,32]. While
for the hyper-parameter λ in the re-visible loss, it is initially set to be 3, and later is updated
with an increment of 0.1 per epoch in first ten rounds. Finally, it is fixed to be 4 till the end of
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training. All the denoising schemes are implemented in Python with PyTorch framework, and all
experiments are conducted on a workstation (Intel Xeon W-2145 CPU @3.70GHz) accelerated
by an NVIDIA GeForce RTX 3060Ti GPU with 8G memory.

4.3. Performance metrics

Different metrics are employed for performance evaluations. Since no clean images are available
in D2 and D4, quantitative evaluations, such as peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [33], are utilized for evaluating in this study.

Signal-to-Noise Ratio (SNR): SNR is a typical global performance metric that is defined to
be the ratio of the signal mean to the background standard deviation, i.e.,

SNR = 20log(Imax/σB) (12)

where Imax is the maximum pixel value of the whole denoised image, and σB is the standard
deviation of noise with in a background region B.

Equivalent Number of Looks (ENL): ENL is a metric typically utilized to measure the
smoothness of the homogeneous image regions, and it measures the image background region in
this study, and it is defined as below,

ENL = µ2
B/σ

2
B (13)

where µB and σB denote the mean and standard deviation of an image background region B,
respectively. The larger ENL is, the smoother the corresponding region.

Variance (VAR): VAR is sensitive to noise, and it is defined as below in this study,

VAR =
∑︂

j

∑︂
i
|I (i, j) − µ|2 (14)

where I(i, j) denotes the pixel intensity at the i-th row and j-th column of an image I, and µ is the
mean of the image I. For each OCT image, since the background region occupies a large portion,
the pixel intensity in despeckled image background should be similar with each other. Hence, the
smaller VAR is, the better the denoising effect would be.

Contrast to noise ratio (CNR): CNR is the ratio of image contrast to noise, measuring the
ratio of peak signal intensity to that of the background, and it is defined as follows,

CNR =
1
n

n∑︂
i=1

10 log
⎛⎜⎜⎝
|µi − µB |√︂
σ2

i + σ
2
B

⎞⎟⎟⎠ (15)

where µi and σ2
i denote the mean and variance of a selected region i, while µB and σ2

B are the
mean and variance of a background region B.

4.4. Results with retina image dataset

B2Unet is trained with the 210 noisy image patches that are cropped from three random noisy
images in D1 first, and then, it is employed to process the other subset images. The remaining
seven noisy images in D1 with a size of 950×500 are processed by B2Unet for evaluation.

Fig. 5 presents an image from D1 that is processed with different despeckling methods. As
shown, satisfactory results are obtained with different methods. Specifically, among those
model-based methods, TSI achieves the least significant effect, while NWSR performs better.
As illustrated by Fig. 5(d), extensive speckle residues still exist in the denoised image, and the
artifacts also contaminates the image structural details. While in Figs. 5(c), the speckles are
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Fig. 5. An OCT image from subset D1 used for experiment. (a) The original image from
D1 for processing. (b) The corresponding real clean image. The image despeckled by (c)
NWSR, (d) TSI, (e) SRCNN, (f)DRGAN, (g)MAP-SNR, (h)B2Unet.

largely suppressed, making the overall image smooth. However, as the speckle distribution
variance must be known as a priori for NWSR, the contrasts of structural details appear to be
reduced for NWSR. Similarly, the structural boundaries in Fig. 5(d) by TSI are also affected by
artifacts, wherein the image is excessively smoothed.

Figure 5(e) presents the image processed by SRCNN. Results show that, as a fully supervised
deep-learning method, SRCNN suppresses speckles effectively, with which influences speckles
are largely reduced, while the tissue structural details are well preserved. The image looks smooth
with the tissue details being clearly resolved, and it is even better than those processed by the
model-based methods. In clinical practice, however, since noisy-clean image pairs are difficult to
obtain prior, the applications of fully supervised deep-learning methods could be hindered.
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Figures 5(f) and 5(g) show two images that are processed by the un-supervised and self-
supervised methods, i.e., DRGAN and MAP-SNR, respectively. Both images demonstrate that
the overall denoising effects of DRGAN and MAP-SNR are excellent since the speckles are
largely suppressed and tissue microstructures are well preserved, and they are even comparable
with those fully supervised methods. Due to the lack of sufficient clean images for training,
however, there still exist some over-denoised areas in the background region for DRGAN in
Fig. 5(f), and some noise residuals in Fig. 5(g) denoised by MAP-SNR.

To alleviate the difficulties of acquiring clean images, the proposed B2Unet is designed to
learn from a single noisy image for despeckling. Figure 5(h) shows the image denoised with
B2Unet. As seen, B2UNet largely suppresses speckles with the influence of speckles being nearly
negligible. Specifically, as shown in the left inset in Fig. 5(h), speckles in the image background
regions are nearly eliminated, and denoising results are comparable to those of the clean image
shown in Fig. 5(b). It is also worth mentioning that, after being despeckled, the image details are
well preserved, while the tissue structural details are still comparable to those of the clean one,
e.g., both the image resolution and the structural details illustrated in the right inset in Fig. 5(h)
are comparable to those in Fig. 5(b). Such comparisons indicate that B2Unet is effective in
despeckling and its obtained results are comparable with those existing methods.

To further verify the effectiveness of B2Unet, different metrics, e.g., SNR, ENL, CNR and VAR,
are also calculated for images in D1 for quantitative assessment. Specifically, since those images
have their corresponding clean counterparts, both PSNR and SSIM are also calculated. Table 1
presents a quantitative comparison between those methods. Results in Table 1 show that B2Unet
performs the best among all those methods with different metrics. For example, its SSIM, SNR,
and ENL outperform those of the self-supervised MAP-SNR scheme by 1.4%, 27.8% and 862.8%,
respectively. In addition, its SSIM, SNR and ENL outperform the fully-supervised method
SRCNN by 2.8%, 24.4% and 595.7%, respectively. Such results convincingly demonstrate that
B2Unet is effective for despeckling, especially for removing the background noises, and its
performances are comparable to those of the state-of-the-art existing methods.The SSIM value
obtained by this method ranks first among all methods, indicating that the image structural details
of our method are also well preserved in the despeckling process.

Table 1. Quantitative assessments with D1 and D2 for different methods.

Subject Number Size Method PSNR SSIM SNR ENL CNR VAR(10e8)

Data1 10 10*4 950×500

Noisy image 17.986 0.0838 18.1153 3.7369 0 8.0300

NWSR 27.2954 0.5730 31.4536 111.8567 3.3357 3.5231

TSI 27.835 0.6693 33.5246 235.1185 3.9109 3.3464

SRCNN 27.3115 0.7127 38.8163 890.2302 3.2697 2.5368

DRGAN 19.5065 0.6591 37.6299 638.7958 3.7403 5.5284

MAP-SNR 28.1088 0.7222 39.3228 643.2975 3.1690 3.0680

B2Unet 27.0875 0.7325 48.3045 6193.5509 2.8456 2.3276
clean \ \ 32.4701 142.1576 3.2902 3.5368

Data2 39 39*4 450×450

Noisy image \ \ 17.8404 3.9811 -0.9947 3.6453

NWSR \ \ 32.6035 146.0455 1.3459 1.616

TSI \ \ 40.0417 1343.8894 2.2217 1.3239

SRCNN \ \ 40.8091 1377.9681 1.3485 1.2858
DRGAN \ \ 34.4314 271.7027 1.4646 1.8590

MAP-SNR \ \ 41.8373 1153.4238 1.3708 1.5510

B2Unet \ \ 48.4294 5417.3030 0.9268 1.3548
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Since all images in Datasets D1 and D2 are acquired with the same OCT device, we reasonable
assume that speckle distribution pattern in the images of D2 is the same as that in D1, and thus,
B2Unet trained by D1 is adopted directly for image despeckling for D2. Figure 6 presents an
image from D2 that is processed with different despeckling methods. As seen, the denoising
performances vary among different methods, and the overall performances of those model-based
methods are less significant as compared with those of deep learning ones. From Figs. 6(a)–6(h),
it could be observed that, among those model-based methods, NWSR performs much better
than TSI with the denoised image shown in Fig. 6(c) are much smoother than Fig. 6(d), since
blurring effects caused by excessive smoothing appear in the image processed by TSI, as shown
in Fig. 6(d).

Fig. 6. An OCT image from D2 for verification. (a) Original noisy image, (b) Image
averaged over four consecutive frames, and image processed by (c)NWSR, (d) TSI, (e)
SRCNN, (f) DRGAN, (g) MAP-SNR, (h) B2Unet.

Results in Fig. 6(e) show that the denoising effect could be largely improved when employing
the fully supervised deep learning schemes. As shown in Figs. 6(e), by utilizing SRCNN, the
image speckles are largely reduced while the structural details, especially the layered boundaries,
are well preserved. Figures 6(f) and 6(g) show the images that are denoised by the un-supervised
DRGAN and the self-supervised MAP-SNR, respectively. Results in Fig. 6(f) show that DRGAN
help preserve the detailed layered structures, yet there still exist small speckles in the background
area, while Fig. 6(g) illustrates that MAP-SNR largely suppresses the speckle noise in the
background areas with the structural details being well preserved, yet there exist some speckle
residuals in the complex structural area. While for B2Unet, one can also observe that its denoising
effects are much better than those of NWSR, TSI, while are comparable to those fully supervised
or self-supervised learning methods, i.e., DnCNN and MAP-SNR. Specifically, as shown in
the larger inset of each figure, the layered structural details are well preserved in the image by
B2Unet, and they are comparable to or even better than those in the images processed by the fully
supervised method, e.g., Fig. 6(e) by SRCNN. While for the background regions, as shown by
the smaller inset in each image, the one processed by B2Unet is smooth, while the speckles in
background regions are nearly eliminated. Such results convincingly demonstrate that B2Unet is
able to alleviate the influence of speckles using a single noisy image only.

Table 1 also presents a quantitative comparison between B2Unet and the existing denoising
methods with dataset D2. As we can see, B2Unet achieves the highest SNR and ENL among
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all those methods, which is 15.7% and 369.7% higher than that of MAP-SNR. It is also worth
mentioning that both CNR and VAR of B2Unet are satisfactory and comparable to those of the
existing methods. Such results conclude that the denoising ability of B2Unet with D1 is also
fully applicable to D2.

Experiments are also carried out with datasets D3 and D4 to verify the effectiveness of B2Unet.
Again, B2Unet trained by D1 is employed for processing the images from D3 and D4, wherein
D3 contains a ground truth image for reference while D4 does not. Specifically, for D3, all 18
human retinal images are adopted for testing, with one being randomly selected for comparisons.
While for D4, four noisy images collected at the same position are present, and the average of
four consecutive frames is utilized as a reference clean image for comparisons.

Figure 7 presents an image from D3 that is processed by different methods. As seen, the
performances vary among different methods. Specifically, among those methods, NWSR performs
better than TSI. As shown in Figs. 7(c) and 7(d), such obtained images are even comparable to
ground truth clean image shown in Fig. 7(b). While when deep learning schemes are employed,
satisfactory results can also be achieved. As seen, Figs. 7(e) and 7(h) that are processed by
SRCNN and B2Unet are comparable to the ground truth clean image in Fig. 7(b), and the one
processed by B2Unet is also comparable to those by SRCNN. In Figs. 7(e) and 7(h), it could
also be noticed that the structural details, as illustrated by the larger inset, are well preserved,
while the speckles in the image background, as shown in the smaller inset, are almost eliminated.
Figures 7(f) and 7(g) show the images denoised by DRGAN and MAP-SNR, respectively. The
observations are similar to those for D1. The image denoised by DRGAN preserves the important
image structures, yet the background areas still contain some speckles. In contrast, the image
denoised by MAP-SNR achieves satisfactory denoising effects for both image structures and
background areas, and they are comparable to the ones by B2Unet shown in Fig. 7(h). Results in
Fig. 7(h) demonstrate that B2Unet achieves satisfactory speckle suppression in OCT images.

Figure 8 presents an image of D4 processed by different methods. As shown, TSI achieves the
best performances, followed by MAP-SNR and B2Unet as shown in Figs. 8(g) and 8(h). It is
worth noting that SRCNN achieves satisfactory denoising results in Figs. 8(e), yet the structural
details are not well preserved due to the blurring effects caused by excessive smoothing. In
contrast, DRGAN, MAP-SNR and B2Unet achieves a trade-off between the denoising effects
and the image detail preservations. As shown in the insets of Figs. 8(f), 8(g), and 8(h), although
speckle suppressions are not as good as those in Fig. 8(e), the layered structural boundaries could
be clearly resolved. Such results again convincingly prove the effectiveness of B2Unet.

Table 2 presents the quantitative comparison between B2Unet and the other existing methods
for dataset D3 and D4. Specifically, B2Unet achieves the best SSIM, SNR and ENL, and it is
1.4%, 13.1% and 263.2% higher than those of MAP-SNR for dataset D3. For both D3 and D4, it
could be noticed that B2Unet largely outperforms both the fully supervised and the unsupervised
deep learning methods for all metrics, demonstrating that B2Unet is robust and effective for
speckle reductions in OCT image. Furthermore, since no clean image is required by B2Unet
prior, it is expected that B2Unet could be widely adopted as a feasible tool for OCT denoising,
and thus, would be of great potential in clinical applications.

4.5. Results with other datasets

To further verify the robustness of B2Unet, some other dataset, i.e., swine eye images [34], and
those acquired by our lab-customize OCT systems in vivo, e.g., thumbnail images [35], skin
images [35], airway epithelia image [36] and diseased retina image [37], are also employed in
experiments. B2Unet trained by D1 again is utilized for despeckling. Since those OCT devices
are different, B2Unet is also trained with the corresponding in vivoimages for comparisons. The
model training parameters are kept the same as those used with D1.
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Fig. 7. A random image from D3 used for experiment. (a) The original image, (b) ground
truth clean image. The image processed by (c) NWSR, (d) TSI, (e) SRCNN, (f) DRGAN,
(g) MAP-SNR, (h)B2Unet.

Figures 9 presents those images denoised with B2Unet that are trained with different datasets.
Specifically, Figs. 9(a1-a5) present the original images that are acquired by different OCT systems,
while Figs. 9(b1-b5) and Figs. 9(c1-c5) show the images processed by B2Unet that are trained
by D1 [28,29] and in vivoimages, respectively. As shown in Figs. 9(a1-a5), extensive speckles
exist in the original noisy images, which largely degrades image quality, and thus, hides the
image details. While after been denoised by B2Unet, however, the images’ qualities are largely
improved. As we can see in Figs. 9(b1-b5) and 9(c1-c5), all images become smooth with image
details been well preserved, and the image speckles are largely removed. Specifically, for the
image background as shown in the green rectangles, the speckles are largely suppressed or even
removed.



Research Article Vol. 14, No. 6 / 1 Jun 2023 / Biomedical Optics Express 2787

Fig. 8. A random image from D4 used for experiment. (a) The original image, (b) reference
clean image averaged over four consecutive frames. The image processed by (c) NWSR, (d)
TSI, (e) SRCNN, (f) DRGAN, (g) MAP-SNR, (h)B2Unet.

When further comparing Figs. 9(b1-b5) with Figs. 9(c1-c5), one can also observe that, visual
effects of those images denoised by B2Unet that trained by D1 are much better than those
processed by B2Unet that trained with in vivo images. Performance metrics are also calculated
in Table 3. Results show that metrics of the images processed by B2Unet trained with D1 are
much better, yet the ones trained with in vivoimages are not satisfactory. The main reason is
probably because of the speckle distributions of those images. As shown, speckles in those in
vivoimages are large and their distributions are dense over the whole images, which largely hides
the tissue microstructures. Therefore, B2Unet training is not satisfactory if such in vivoimages
are used, and the despeckling effects are limited. In contrast, when B2Unet is trained by D1,
both image visual effects and quantitative metrics are better. This is because speckles in those
retinal images are relatively uniform, and the distributions are relative less significant in the
image background. In such a case, the image speckles could be largely suppressed once B2Unet
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Table 2. Quantitative results of data sets D3 and D4 with different methods.

Subject Number Size Method PSNR SSIM SNR ENL CNR VAR(10e8)

Data3 18 18*4 900×450

Noisy image 17.7850 0.0904 17.9173 3.7261 -0.8984 7.8228

NWSR 26.9449 0.5560 31.7876 108.9344 1.5913 3.8106

TSI 27.5151 0.6552 34.7992 293.4748 2.0721 3.5564

SRCNN 26.8732 0.6739 38.6413 868.5034 1.6280 2.8740
DRGAN 23.7349 0.5781 33.6506 217.3121 1.5944 4.2609

MAP-SNR 27.2381 0.6845 39.9935 752.9737 1.5034 3.6045

B2Unet 26.8162 0.6944 45.2387 2735.1920 0.9640 3.1687

clean \ \ 32.4320 119.7168 1.9751 3.7819

Data4 1 1*4 1000×450

Noisy image \ \ 19.4950 7.3610 -1.5774 5.9387

NWSR \ \ 34.8093 396.7630 0.9676 2.4219

TSI \ \ 42.7879 3277.5277 1.7007 2.2457

SRCNN \ \ 40.9488 2162.296 1.5263 1.963
DRGAN \ \ 34.4897 315.6014 1.2869 3.7258

MAP-SNR \ \ 35.2933 395.6756 1.1288 2.5343

B2Unet \ \ 42.0168 2080.3318 0.2780 2.4118

is adopted for despeckling. Such results again demonstrate that B2Unet is robust and effective for
OCT speckle reductions.

Table 3. Performances of B2Unet trained with different image datasets.

Data type B2Unet trained with SNR CNR ENL VAR(10e8)

Swine
Noisy image dataset 27.2339 2.7919 19.8199 5.6871

Retinal image dataset 40.2378 3.2017 773.9742 2.8797
The corresponding image dataset 22.8309 0.7868 7.1429 10.3808

Skin
Noisy image dataset 23.914 2.6375 4.6249 8.2738

Retinal image dataset 39.0532 2.5532 444.6741 4.5256
The corresponding image dataset 33.6214 3.2207 53.239 6.1829

Thumbnail
Noisy image dataset 24.4208 4.029 2.8338 29.1556

Retinal image dataset 43.2567 3.5132 882.0393 10.7958
The corresponding image dataset 25.1632 3.2495 2.607 27.0152

Airway epithelia
Noisy image dataset 57.075 2.6073 0 14.2979

Retinal image dataset 57.129 2.344 17429.1881 7.7463
The corresponding image dataset 73.0101 1.6488 0 15.3711

Diseased retina
Noisy image dataset 27.877 1.3077 3.4388 3.4031

Retinal image dataset 45.4441 0.5904 1349.2797 1.2003
The corresponding image dataset 31.8686 1.4156 6.2667 3.0201

4.6. Influences of speckle distributions

When employing supervised learning schemes for OCT despeckling, the images utilized for both
training and testing are typically from the same datasets acquired by the same OCT, which thus
may have similar noise distributions. While for self-supervised B2Unet, although its despeckling
is influenced by the images employed for training, it is robust and effective in processing those
acquired by other OCTs in vivo, as long as those images used for training have similar speckle
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Fig. 9. B2Unet for in vivoOCT image despeckling. (a1-a5) The original image acquired by
different OCT systems in vivo. (b1-b5) The images despeckled by B2Unet trained by D1.
(c1-c5) The noisy image despeckled by B2Unet trained with the corresponding in vivoimages.
a1: swine eye image, a2: skin image; a3: thumbnail image; a4: airway epithelia image; a5:
diseased retinal image. The green rectangles denote the background and structure areas
utilized for quantitative analysis.

distributions [28,29]. To further evaluate the influences of speckle distributions, those in vivo
images are further up- and down-sampled first, and then are utilized for B2Unet training, and
finally, B2Unet is employed for OCT speckle reductions.
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Fig. 10. B2Unet is employed for despeckling in vivo images. Column (a1-a5) original noisy
images, and columns (b-d) images despeckled by B2Unet trained by (b1-b5) D1, (c1-c5)
down-sampled, and (d1-d5) up-sampled images. Rows 1-5 denote the swine eye, skin,
thumbnail, airway epithelia, and diseased retinal images. The green rectangle represents the
background and the structure areas for metrics calculation.

Figure 10 presents the in vivo images that are processed with B2Unet trained with retinal
images from D1, i.e., the original, down-sampled, and up-sampled ones. Results in Fig. 10
demonstrate that the best visual effects are achieved for those down-sampled images. Specifically,
as is shown, speckles in those down-sampled images, i.e., Figs. 10(c1-c6), are largely suppressed,
and thus, the obtained images are smooth, while the structural details are well preserved. On the
contrary, visual effects of those up-sampled images are less significant as speckle residuals still
exist. The reason for such results is that down-sampling operation reduces the overall image size,
while the image speckles are concentrated, making them easier to suppress.

Performance metrics are also calculated for quantitative evaluation. Table 4 presents a
comparison between those images that are processed with B2Unet that are trained with different
image datasets. Results show that, those down-sampled images achieve the best CNR and the
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lowest ENL and VAR among all those obtained images, while SNR of the down- and up-sampled
images are close to that of the original image. Such visual effects and quantitative results again
demonstrate that B2Unet is robust and effective for speckle reductions in OCT images with dense
noise distributions. For the dense speckle noise distribution, it can better reflect the characteristics
of noise removal visually, but there is no rule in the evaluation indicators. Whether it is denoising
after up-sampling or down-sampling, each has its advantages and disadvantages. Although the
denoising effect is obvious after down-sampling, it will lead to smaller image size and no effective
tissue microstructure can be observed. The denoising after up-sampling will lead to larger image
size and better observation of tissue microstructure, but it can not achieve effective denoising
results. For image denoising, the best denoising effect is to use the model trained on the same
noise distribution data to denoise. The denoising after up-sampling or down-sampling can only
be applied to some special scenes.

Table 4. Performances of B2Unet for despeckling different noisy images.

Data type Process SNR CNR ENL VAR(10e8)

Swine image(single)

noisy 14.5747 -2.0967 0.7788 17.467

down-sampling 33.1322 4.6824 166.1589 0.7448
normal 28.7817 4.0795 50.9005 4.8892

up-sampling 30.2956 3.3906 61.2274 17.2702

Swine image(average)

noisy 27.2339 2.7919 19.8199 5.6187

down-sampling 40.4153 3.3979 1023.3177 0.6787
normal 40.2378 3.2017 773.9432 2.8797

up-sampling 42.3083 2.8893 1021.14 11.2885

Skin

noisy 23.914 2.6375 4.6249 8.2738

down-sampling 40.096 2.6983 713.5036 1.0322
normal 39.0532 2.5532 444.6741 4.5256

up-sampling 43.3615 2.4485 1106.1574 17.4727

Thumbnail

noisy 24.4208 4.029 2.8338 29.1556

down-sampling 46.2869 3.56 1730.3891 2.6581
normal 43.2567 3.5132 882.0393 10.7958

up-sampling 42.3377 3.3817 692.2494 42.801

Airway epithelia

noisy 57.075 2.6073 0 14.2979

down-sampling 48.6905 2.0471 2715.6615 1.7387
normal 57.129 2.344 17429.1881 7.7463

up-sampling 65.6328 2.0413 124189.8947 29.39128

Diseased retina

noisy 27.877 1.3077 3.4388 3.4031

down-sampling 43.3646 0.9415 1071.7812 0.2679
normal 45.4441 0.5904 1349.2797 1.2003

up-sampling 47.4353 0.4807 2500.2002 4.8021

4.7. Influences of re-visible loss

Experiments are also carried out to verify the effectiveness of re-visible loss function by changing
the variable λ . Specifically, experiments are conducted by increasing rate of λ at each step. First,
we evaluate the influences λ by setting it as a constant. For experiments, we set λ to be 3, 4, 5, 6,
7, respectively, and then, employ the corresponding re-visible loss functions for B2Unet training,
and calculate both SNR and ENL for images from D1. Results are plotted in Fig. 11(a). As we
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Fig. 11. Quantitative results of different λwith re-visible loss trained in D1. And quantitative
results of different increasing rates of λ with re-visible loss trained in D1.

can see, with an increasing variable λ, both SNR and ENL increase significantly from 3 to 4, and
then stay more or less unchanged when λ increases from 4 to 7. Such results show that increasing
λ in the re-visible loss function would improve the despeckling quality of OCT images and prove
the reliability of the theoretical derivation again.

Furthermore, we also evaluate the influences of the increasing rate of λ at each step in the
training process. In the testing process, we set the initial value of λ to be 3, and then increase it
by 0.01, 0.05, 0.1, 0.2, 0.5 respectively at each step, and finally, fix it to be constant after 10 steps.
The metrics are calculated for the images processed by B2Unet that is trained with different
λ. Results in Fig. 11(b) demonstrate that a small increase in λ during the training process can
improve the denoising effects of B2Unet, yet the improvement is quite small with the metrics
being quite similar to each other for different increasing rate of λ. In this study, we choose
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an increasing rate of 0.1 for λ to achieve a balance between the computational loads and the
despeckling effects.

4.8. Influences of refinement strategy

By comparing the denoised images output from the denoising network and those from refinement
unit in Fig. 1(b), experiments are also carried out to verify the effectiveness of refinement module
in B2Unet inference unit with different image datasets.

Figure 12 tests the effectiveness of refinement module on image denoising for D1. Figures 12(a)
and 12(b) are noisy image and its corresponding clean image, while Figs. 12(c) and 12(d) are the
images denoised by B2Unet without and with the refinement strategy. Results in Figs. 12(c) and
12(d) demonstrate that, without the refinement strategy, there exists some speckle residues in
the image background in Fig. 12(c), while when the refinement module is adopted, the image
background is clean while the tissue structural details are well preserved. Therefore, it can be
concluded that the refinement module helps improve noise reductions, especially for removing
those noise residues.

Fig. 12. A noise image from D1 used for experiment. (a) The original image, (b) clean
image. the image processed by B2Unet (c) without refinement, (d) with refinement.

Table 5. Quantitative assessments with D1 and D2 for different methods.

Refinement PSNR SSIM SNR ENL CNR VAR(10e8)

Data1
✗ 27.4017 0.6872 39.2277 700.1321 3.1342 3.0924

✓ 27.0875 0.7325 48.3045 6193.5509 2.8456 2.3276

Data2
✗ \ \ 41.2243 1107.3134 1.2172 1.6419

✓ \ \ 48.4294 5417.3030 0.9268 1.3548

Data3
✗ 26.3662 0.6470 38.6376 161.1556 1.3473 3.7995

✓ 26.8162 0.6944 45.2387 2735.1920 0.9640 3.1687

Data4
✗ \ \ 39.7118 1173.2750 1.1159 2.6008

✓ \ \ 42.0168 2080.3318 0.2780 2.4118
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Quantitative comparisons are also performed to compare the inference unit with and without
refinement strategy for OCT despeckling. Results in Table 5 show that the refinement module
helps improve all metrics except for CNR. For example, metrics SSIM, SNR, and ENL improved
by 6.6%, 23.1% and 784.6%, respectively for D1. Similar results could also be obtained with
other datasets, demonstrating the effectiveness of the refinement strategy for despeckling.

5. Conclusion

In summary, this paper studies speckle reductions in OCT images, and a novel self-supervised
deep leaning method, namely the B2Unet, is proposed for the first-time for speckle reductions in
OCT images, to the best of our knowledge. By utilizing a global-aware mask mapper to improve
image perception, and a new re-visible loss function to facilitate network training, B2Unet is
designed to employ a single noisy image for network training. Experiments with different image
datasets are conducted to compare B2Unet with the state-of-the-art existing methods. Influence
of OCT speckle distributions is also evaluated in different cases. Both qualitative and quantitative
results show that B2Unet is effective and robust in suppressing image speckles while retaining
the layered microstructural details and tissue morphologies in OCT images, and its performances
are comparable to, or even better than those of the fully supervised deep learning methods in
different cases when the image speckles are comparable to those used for B2Unet training. Owing
to its effectiveness and robustness, B2Unet is of great significance to clinical applications and is
expected to be a viable tool for OCT imaging-based diagnosis, especially for the cases when real
clean images are not available or hard to acquire prior.
Funding. National Natural Science Foundation of China (62220106006); Basic and Applied Basic Research Foundation
of Guangdong Province (2021B1515120013); Key Research and Development Projects of Shaanxi Province (2021SF-342);
Key Research Project of Shaanxi Higher Education Teaching Reform (21BG005).

Acknowledgments. The authors would like to acknowledge the continuous support from Guangdong Key
Laboratory of Integrated Optoelectronics and Intellisense.

Disclosures. The authors declare no conflicts of interest.

Data Availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.

Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
2. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retinal Eye Res. 27(1),

45–88 (2008).
3. A. V. D’Amico, M. Weinstein, X. Li, J. P. Richie, and J. Fujimoto, “Optical coherence tomography as a method for

identifying benign and malignant microscopic structures in the prostate gland,” Urology 55(5), 783–787 (2000).
4. A. Desjardins, B. Vakoc, G. Tearney, and B. Bouma, “Speckle reduction in OCT using massively-parallel detection

and frequency-domain ranging,” Opt. Express 14(11), 4736–4745 (2006).
5. A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” Image Processing On Line 1, 208–212 (2011).
6. A. Chambolle, “An algorithm for total variation minimization and applications,” J. Math. Imaging Vis. 20(1/2),

163–177 (2004).
7. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Bm3d image denoising with shape-adaptive principal component

analysis,” in SPARS’09-Signal Processing with Adaptive Sparse Structured Representations (2009).
8. A. Abbasi, A. Monadjemi, L. Fang, and H. Rabbani, “Optical coherence tomography retinal image reconstruction via

nonlocal weighted sparse representation,” J. Biomed. Opt. 23(03), 1 (2018).
9. X. Wang, X. Yu, X. Liu, S. Chen, S. Chen, N. Wang, and L. Liu, “A two-step iteration mechanism for speckle

reduction in optical coherence tomography,” Biomedical Signal Processing and Control 43, 86–95 (2018).
10. L. Bian, J. Suo, F. Chen, and Q. Dai, “Multiframe denoising of high-speed optical coherence tomography data using

interframe and intraframe priors,” J. Biomed. Opt. 20(3), 036006 (2015).
11. H. Rabbani, R. Nezafat, and S. Gazor, “Wavelet-domain medical image denoising using bivariate Laplacian mixture

model,” IEEE Trans. Biomed. Eng. 56(12), 2826–2837 (2009).
12. J.-L. Starck, E. J. Candés, and D. L. Donoho, “The curvelet transform for image denoising,” IEEE Trans. on Image

Process. 11(6), 670–684 (2002).

https://doi.org/10.1126/science.1957169
https://doi.org/10.1016/j.preteyeres.2007.07.005
https://doi.org/10.1016/S0090-4295(00)00475-1
https://doi.org/10.1364/OE.14.004736
https://doi.org/10.5201/ipol.2011.bcm_nlm
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1117/1.JBO.23.3.036011
https://doi.org/10.1016/j.bspc.2018.02.011
https://doi.org/10.1117/1.JBO.20.3.036006
https://doi.org/10.1109/TBME.2009.2028876
https://doi.org/10.1109/TIP.2002.1014998
https://doi.org/10.1109/TIP.2002.1014998


Research Article Vol. 14, No. 6 / 1 Jun 2023 / Biomedical Optics Express 2795

13. C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin, “Deep learning on image denoising: an overview,” Neural
Networks 131, 251–275 (2020).

14. S. Lefkimmiatis, “Universal denoising networks: a novel cnn architecture for image denoising,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 3204–3213.

15. K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian denoiser: residual learning of deep CNN
for image denoising,” IEEE Trans. on Image Process. 26(7), 3142–3155 (2017).

16. C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using deep convolutional networks,” IEEE Trans.
Pattern Anal. Mach. Intell. 38(2), 295–307 (2016).

17. S. Shurrab and R. Duwairi, “Self-supervised learning methods and applications in medical imaging analysis: a
survey,” arXiv, arXiv:2109.08685 (2021).

18. D. Ulyanov, A. Vedaldi, and S. Victor, “Lempitsky: deep image prior,” in Computer Vision and Pattern Recognition
(CVPR) vol. 1, (2018).

19. Y. Quan, M. Chen, T. Pang, and H. Ji, “Self2self with dropout: Learning self-supervised denoising from single image,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020) pp. 1890–1898.

20. Z. Wang, J. Liu, G. Li, and H. Han, “Blind2unblind: self-supervised image denoising with 594 visible blind spots,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 2129–2137.

21. Y. Huang, W. Xia, Z. Lu, Y. Liu, H. Chen, J. Zhou, L. Fang, and Y. Zhang, “Noise-powered disentangled representation
for unsupervised speckle reduction of optical coherence tomography images,” IEEE Trans. Med. Imaging 40(10),
2600–2614 (2021).

22. A. Guo, L. Fang, M. Qi, and S. Li, “Unsupervised denoising of optical coherence tomography images with
nonlocal-generative adversarial network,” IEEE Trans. Instrum. Meas. 70, 1 (2020).

23. Q. Zhou, M. Wen, M. Ding, and X. Zhang, “Unsupervised despeckling of optical coherence tomography images by
combining cross-scale cnn with an intra-patch and inter-patch based transformer,” Opt. Express 30(11), 18800–18820
(2022).

24. Y. Li, Y. Fan, and H. Liao, “Self-supervised speckle noise reduction of optical coherence tomography without clean
data,” Biomed. Opt. Express 13(12), 6357–6372 (2022).

25. J. J. Rico-Jimenez, D. Hu, E. M. Tang, I. Oguz, and Y. K. Tao, “Real-time OCT image denoising using a self-fusion
neural network,” Biomed. Opt. Express 13(3), 1398–1409 (2022).

26. A. Krull, T.-O. Buchholz, and F. Jug, “Noise2void-learning denoising from single noisy images,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019), pp. 2129–2137.

27. I. Y. Chun, D. Park, X. Zheng, S. Y. Chun, and Y. Long, “Self-supervised regression learning using domain knowledge:
Applications to improving self-supervised denoising in imaging,” arXiv, arXiv:2205.04821 (2022).

28. L. Fang, S. Li, R. P. McNabb, Q. Nie, A. N. Kuo, C. A. Toth, J. A. Izatt, and S. Farsiu, “Fast acquisition and
reconstruction of optical coherence tomography images via sparse representation,” IEEE Trans. Med. Imaging 32(11),
2034–2049 (2013).

29. L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse reconstruction of optical coherence tomography
images,” IEEE Trans. Med. Imaging 36(2), 407–421 (2017).

30. S. Farsiu, S. J. Chiu, R. V. O’Connell, F. A. Folgar, E. Yuan, J. A. Izatt, and C. A. Toth, and Age-Related Eye
Disease Study 2 Ancillary Spectral Domain Optical Coherence Tomography Study Group, “Quantitative classification
of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,”
Ophthalmology 121(1), 162–172 (2014).

31. O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for biomedical image segmentation,” in
International Conference on Medical image computing and computer-assisted intervention (Springer, 2015), pp.
234–241.

32. D. P. Kingma and J. B. Adam, “A method for stochastic,” Optimization. In, ICLR, vol. 5 (2015).
33. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to

structural similarity,” IEEE Transactions on Image Processing, 13(4), 600–612 (2004).
34. M. A. Mayer, A. Borsdorf, M. Wagner, J. Hornegger, C. Y. Mardin, and R. P. Tornow, “Wavelet denoising of

multiframe optical coherence tomography data,” Biomed. Opt. Express 3(3), 572–589 (2012).
35. W. Liu, Y. H. Ong, X. J. Yu, J. Ju, C. M. Perlaki, L. B. Liu, and Q. Liu, “Snapshot depth sensitive Raman spectroscopy

in layered tissues,” Opt. Express 24(25), 28312–28,325 (2016).
36. L. Liu, K. K. Chu, G. H. Houser, B. J. Diephuis, Y. Li, E. J. Wilsterman, S. Shastry, G. Dierksen, S. E. Birket,

and M. Mazur, “Method for quantitative study of airway functional microanatomy using micro-optical coherence
tomography,” PLoS One 8(1), e54473 (2013).

37. P. Mooney, “Retinal OCT images (optical coherence tomography),” Kaggle Dataset, 2018,
http://dx.doi.org/10.17632/rscbjbr9sj.2.

https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1016/j.neunet.2020.07.025
https://doi.org/10.1109/TIP.2017.2662206
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.48550/arXiv.2109.08685
https://doi.org/10.1109/TMI.2020.3045207
https://doi.org/10.1109/TIM.2020.2987636
https://doi.org/10.1364/OE.459477
https://doi.org/10.1364/BOE.471497
https://doi.org/10.1364/BOE.451029
https://doi.org/10.48550/arXiv.2205.04821
https://doi.org/10.1109/TMI.2013.2271904
https://doi.org/10.1109/TMI.2016.2611503
https://doi.org/10.1016/j.ophtha.2013.07.013
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1364/BOE.3.000572
https://doi.org/10.1364/OE.24.028312
https://doi.org/10.1371/journal.pone.0054473
http://dx.doi.org/10.17632/rscbjbr9sj.2

